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Objective To delineate the systemic and cerebral hemodynamic response to incremental increases in core tem-
perature during the rewarming phase of therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy (HIE).
Study design Continuous hemodynamic data, including heart rate (HR), mean arterial blood pressure (MBP),
cardiac output by electrical velocimetry (COEV), arterial oxygen saturation, and renal (RrSO2) and cerebral (CrSO2)
regional tissue oxygen saturation, were collected from 4 hours before the start of rewarming to 1 hour after the
completion of rewarming. Serial echocardiography and transcranial Doppler were performed at 3 hours and 1 hour
before the start of rewarming (T-3 and T-1; “baseline”) and at 2, 4, and 7 hours after the start of rewarming (T+2,
T+4, and T+7; “rewarming”) to determine Cardiac output by echocardiography (COecho), stroke volume, fractional
shortening, and middle cerebral artery (MCA) flow velocity indices. Repeated-measures analysis of variance was
used for statistical analysis.
Results Twenty infants with HIE were enrolled (mean gestational age, 38.8 ± 2 weeks; mean birth weight, 3346 ± 695
g). During rewarming, HR, COecho, and COEV increased from baseline to T+7, and MBP decreased. Despite an in-
crease in fractional shortening, stroke volume remained unchanged. RrSO2 increased, and renal fractional oxygen
extraction (FOE) decreased. MCA peak systolic flow velocity increased. There were no changes in CrSO2 or ce-
rebral FOE.
Conclusions In neonates with HIE, CO significantly increases throughout rewarming. This is due to an increase
in HR rather than stroke volume and is associated with an increase in renal blood flow. The lack of change in ce-
rebral tissue oxygen saturation and extraction, in conjunction with an increase in MCA peak systolic velocity, sug-
gests that cerebral flow metabolism coupling remained intact during rewarming. (J Pediatr 2018;■■:■■-■■).

N eonatal hypoxic-ischemic encephalopathy (HIE) is estimated to affect more than 1 million newborn infants
annually worldwide.1 Over the past decade, therapeutic hypothermia has emerged as standard of care for neonatal
HIE.2

During whole-body therapeutic hypothermia, the lowering of core temperature induces a myriad of physiological changes.3

These include, but are not limited to, lower heart rate (HR) from slowing of the firing of the sinoatrial node,4 decreased cardiac
output and mild to no hypotension,5 centralization of blood flow via peripheral vasoconstriction, increased metabolic heat
production,6 decreased cerebral and systemic metabolic rate, mild hyperglycemia, mild coagulopathy, and diminished
immunoreactivity.3 At the target organ, decreased cerebral oxygen consumption is coupled to a relative decrease in cerebral blood
flow.7-10 However, despite an overall lower cerebral blood flow, a higher percentage of left ventricular output is directed to the
injured brain.11

Because neuroapoptosis is mitigated by lowering the core temperature, rewarming may reinitiate or hasten the destructive
process.12-15 Generally, the rewarming phase at the end of therapeutic hypothermia in neonates with HIE proceeds at a

aEEG Amplitude-integrated electroencephalography
COecho Cardiac output by echocardiography
COEV Cardiac output by electrical velocimetry
CrSO2 Regional cerebral oxygen saturation
FOE Fractional oxygen extraction
HIE Hypoxic-ischemic encephalopathy
LVEDA Left ventricular end-diastolic area
LVESA Left ventricular end-systolic area
MBP Mean arterial blood pressure
MCA Middle cerebral artery
MRI Magnetic resonance imaging
NIRS Near-infrared spectroscopy
RrSO2 Regional renal oxygen saturation
SpO2 Arterial oxygen saturation
SVR Systemic vascular resistance
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recommended incremental rate of 0.5°C/hour. Slower rewarm-
ing rates have been advocated for patients with postcardiac
arrest (0.25°C/hour) and severe traumatic brain injury
(0.1°C/hour).16 In animal studies, rapid rewarming results in
temporary flow-metabolism uncoupling,17 worsening of trau-
matically induced axonal injury,18 loss of neuroprotective effects
of therapeutic hypothermia,19,20 and increased mortality.21 In
neonates, unwanted effects of rewarming from hypothermia
include systemic hypotension,22 seizures,23 and even intraven-
tricular hemorrhage.24

Hemodynamic changes have been described during the re-
warming phase of therapeutic hypothermia, including in-
creases in cardiac output and systolic blood pressure and a
decrease in systemic vascular resistance (SVR) and diastolic
blood pressure.25 However, these studies had small numbers
of patients5,22 or focused on the use of a single monitoring tool,
such as echocardiography,11,26,27 transcranial Doppler, or near-
infrared spectroscopy (NIRS).28,29 Time-synced, comprehen-
sive hemodynamic data collection encompassing the rewarming
period is necessary to understand the hemodynamic inter-
play at both the systemic and organ-specific levels. In this pro-
spective observational study, we characterized a wide range of
acute systemic and regional hemodynamic changes using a
comprehensive hemodynamic monitoring and data acquisi-
tion system and echocardiography during the rewarming phase
of therapeutic hypothermia.

Methods

Newborn infants with HIE admitted for therapeutic hypo-
thermia to the Newborn and Infant Critical Care Unit at Chil-
dren’s Hospital Los Angeles between May 2012 and May 2017
were prospectively enrolled in this study. The criteria for ini-
tiation of therapeutic hypothermia were similar to those of the
National Institute of Child Health and Human Develop-
ment’s whole-body hypothermia trial30: gestational age of at
least 36 weeks, admitted within 6 hours, cord blood gas or first-
hour blood gas pH of ≤7.0 or a base deficit of ≥16 mmol/L.
If the pH was 7.01-7.15 or the base deficit was 10-15.9 mmol/
L, additional criteria were required, including history of an acute
perinatal event and a 10-minute Apgar score ≤5 or the need
for assisted ventilation at birth for >10 minutes. For these pa-
tients, therapeutic hypothermia was initiated in the presence
of moderate to severe encephalopathy based on the Sarnat ex-
amination or clinical seizures. Patients with a birth weight <1800
g, a congenital heart defect, no direct arterial blood pressure
monitoring data, higher doses of vasopressors-inotropes (eg,
dopamine >10 µg/kg/min), or extracorporeal membrane oxy-
genation were excluded from the study. The hospital’s Insti-
tutional Review Board approved the study. Written consent from
parents was obtained before enrollment.

Whole-body therapeutic hypothermia maintained at target
rectal temperature of 33.5°C for 72 hours was achieved using
a cooling device and disposable blanket (Blanketrol III;
Cincinnati Sub-Zero, Cincinnati, Ohio). HIE severity was
assessed by Sarnat staging on admission. Patients were moni-
tored for seizures using amplitude-integrated EEG (aEEG) until

rewarming was complete. No patient experienced a clinically
evident or aEEG-detected seizure during the rewarming period.
Rewarming was accomplished over 6 hours by manually raising
the target rectal temperature from 33.5°C to 36.5°C in incre-
ments of 0.5°C/hour.

Echocardiography and Doppler Measurements
Interval measurements of left ventricular output by
echocardiography (COecho), fractional area shortening by
echocardiography, and middle cerebral artery (MCA) veloc-
ity indices by transcranial Doppler (Philips iE33 ultrasound
machine; Philips, Andover, Massachusetts) were performed at
5 different time points by a single operator. Baseline measure-
ments were obtained at 3 hours and 1 hour before the initia-
tion of rewarming (T-minus hours: T-3 and T-1), and 3
rewarming measurements were obtained at 2, 4, and 7 hours
after the initiation of rewarming (T-plus hours: T+2, T+4, and
T+7). Data collection at T-3, T-1, T+2, T+4, and T+7 corre-
sponded to 1 hour of steady state at target temperatures of
33.5°C, 34.5°C, 35.5°C, and 36.5°C, respectively. All patients
had a closed or constricting ductus arteriosus at time of the
echocardiography examinations. From the apical view, pulsed
wave Doppler was performed to measure blood velocity at the
aortic valve. Fully enveloped Doppler waveforms that were
similar in shape and size were used to measure the velocity time
integral and then averaged over 4 consecutive cardiac cycles.
Aortic valve annulus diameter (D) was measured from the para-
sternal long-axis view during the first examination. COecho (in
mL/kg/minute) was calculated as [(pD2/4) × average velocity
time integral × HR] and normalized for body weight (in kg).
From the parasternal short-axis view, left ventricular end-
diastolic area (LVEDA) and end-systolic area (LVESA) were cal-
culated by endocardial contour tracing at the level of the
midpapillary muscle. Left ventricular fractional shortening (%)
was calculated as [(LVEDA - LVESA)/LVEDA] × 100.31

Flow velocity indices in the left MCA were measured using
pulse-wave Doppler. The left MCA was identified in the axial
plane through the temporal window by color Doppler, and a
Doppler sample gate was placed at the proximal portion (M1)
of the MCA. Common velocity indices (peak systolic, end dia-
stolic, and mean velocity) were obtained by outlining the wave-
form envelope manually and averaging over 3-4 consecutive
cardiac cycles. Resistive index was calculated as (peak systolic
velocity - end diastolic velocity)/peak systolic velocity.

Data Collection and Synchronization
HR, arterial oxygen saturation (SpO2), and systolic, diastolic
and mean arterial blood pressure (from an indwelling arte-
rial catheter) were recorded with a Philips Intellivue MP70 ECG
monitor (Philips). Cardiac output measured by electrical
velocimetry (COEV) was averaged over 10 cardiac cycles with
an ICON monitor (Osypka Cardiotronic, La Jolla, California).32

SVR was calculated as SVR = 80 × (MBP - right atrial pressure)/
COecho, with right atrial pressure assumed to be 5 mmHg for
all patients. Frontal cerebral regional tissue oxygen satura-
tion (CrSO2) and left renal regional tissue oxygen saturation
(RrSO2) values were acquired every 30 seconds by NIRS using
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INVOS infant-neonatal sensors and a 5100C oximeter
(Covidien, Mansfield, Massachusetts). Fractional oxygen ex-
traction (FOE) was calculated as FOE = (SpO2 - CrSO2)/
SpO2. The renal-cerebral oxygenation ratio was calculated by
dividing RrSO2 by CrSO2. The foregoing clinical variables were
captured for 11 hours, from 4 hours before to 7 hours after
the start of rewarming, and time-synchronized every 30 seconds
with a data integration and storage platform (Vital Sync;
Medtronic, Minneapolis, Minnesota or Bernoulli One; Ber-
noulli Enterprise, Milford, Connecticut).

aEEG was monitored using an Olympic Brainz Monitor
(Natus Medical, Pleasanton, California). The aEEG data were
not synchronized with the data integration and storage
platforms.

Magnetic Resonance Imaging Grading of HIE
Severity
Noncontrast brain magnetic resonance imaging (MRI) was per-
formed at a median age of 6 days (IQR, 5-9 days). A pediat-
ric neuroradiologist blinded to the hemodynamic data and
clinical outcome of the patients reviewed the images based on
a previously described scoring system.33 T1-, T2-, and diffusion-
weighted MRI sequences were scored according to acute and
subacute signal abnormalities in the basal ganglia/thalamus
region (score 0-4) and watershed region (score 0-5). Injury se-
verity was dichotomized to either normal-mild (normal
imaging, basal ganglia/thalamus score ≤1, or watershed score
≤2), or moderate-severe (basal ganglia/thalamus score ≥2 or
watershed score ≥3).

Statistical Analyses
All continuous data were averaged over 10 minutes at the time
points T-3, T-1, T+2, T+4, and T+7. These 5 data points were
collected during a quiet state immediately before
echocardiography or ultrasound, to avoid analysis of data col-
lected during patient movement or agitation. Figure 1 (avail-
able at www.jpeds.com) illustrates the hemodynamic data
captured before and during rewarming.

Datasets at each designated time point were tested for nor-
mality using the D’Agostino and Pearson omnibus normal-
ity test. For data that passed the normality test, results are
presented as mean ± SD; otherwise, data are expressed as
median and IQR. Baseline values (T-3 and T-1) were com-
pared using a 2-way paired t test. Because the 2 baseline values
were not different, data from T-1 served as the baseline values
for comparison with the rewarming data. One-way repeated-
measures ANOVA with Geisser-Greenhouse correction was used
to identify any significant change in each hemodynamic
measure from baseline to the end of rewarming (T-1 to T+7).
Post hoc analysis using the Tukey multiple-comparisons test
identified significant hemodynamic changes between time
points. Statistical significance was defined as P <.05.

Results

The 20 patients (10 females) enrolled had a mean gestational
age of 38.8 ± 2 weeks and a mean birth weight of 3345 ± 695 g.

Based on the initial Sarnat staging, 17 infants had
moderate encephalopathy and 3 had severe encephalopathy.
Based on MRI grading, 16 infants had no or mild brain
injury, and 4 had moderate or severe injury. Sarnat staging
corresponded closely with MRI severity in all patients
except 1 patient who had moderate Sarnat encephalopathy
but severe brain injury on MRI. Median Apgar scores at 1
and 5 minutes were 2 (IQR, 1-4) and 4 (IQR, 3-6), respec-
tively. pH and base deficit on umbilical cord blood sample
or first-hour arterial blood gas were 6.99 ± 0.13 and 15 ± 5,
respectively.

The antecedents of perinatal asphyxia included nonspe-
cific nonreassuring fetal heart tone (n = 11), cephalo-pelvic
disproportion (n = 2), abruptio placenta (n = 2), uterine rupture
(n = 1), cord prolapse (n = 1), maternal urosepsis (n = 1),
maternal cardiovascular collapse (n = 1), and maternal respi-
ratory failure (n = 1). Seven patients had either clinical or aEEG-
confirmed seizures and were treated with anticonvulsive drug(s).
All patients were seizure-free during the 11 hours of hemo-
dynamic monitoring. One patient received dopamine
(7 µg/kg/min) throughout the rewarming period without dose
titration. At the end of hemodynamic monitoring (T+7), the
mean rectal temperature was 36.5 ± 0.3°C. Temperature-
corrected arterial carbon dioxide during the period of data col-
lection was 44.3 ± 6.7 mmHg.

Systemic and Cardiac Hemodynamic Changes
There was no significant difference between the baseline
time points (T-3 and T-1) in terms of HR, systolic blood
pressure, diastolic blood pressure, MBP, SVR, stroke volume,
COEV, or COecho. During rewarming, there was an increase
in HR (P = .001) and in fractional shortening (P = .019), but
not in stroke volume (P = .247) (Figure 2, A; available at
www.jpeds.com). There were stepwise increases in COEV

and COecho over time (P = .001 for both) (Figure 2, B; avail-
able at www.jpeds.com). COEV increased from a baseline of
153 ± 43 mL/kg/min to 197 ± 42 mL/kg/min after rewarm-
ing was complete, for an overall CO increase of 29%. Simi-
larly, COecho increased from a baseline of 149 ± 35 mL/kg/min
to 179 ± 34 mL/kg/min, for an overall COecho increase of 20%.
Conversely, both SVR and MBP decreased (P < .0001 and
P = .0203, respectively) during rewarming (Figure 2, B). No
significant changes in systolic blood pressure, diastolic blood
pressure, or pulse pressure were detected.

MCA Doppler Velocity Indices
There was no significant difference between the baseline
time points (T-3 and T-1) for peak systolic velocity, mean
velocity, end diastolic velocity, and resistive index. We found
a significant rise in peak systolic velocity (P = .002) over
time, with post hoc multiple comparisons test revealing a
significant difference between baseline (T-1) vs T+4 (P = .023)
and T+7 (P = .023) (Figure 3). There were no significant
changes in mean velocity, end diastolic velocity, or resistive
index as core body temperature increased over time (data
not shown).
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Regional Tissue Oxygen Saturation and FOE
There was no significant difference between the baseline time
points (T-3 and T-1) for CrSO2, RrSO2, cerebral and renal FOE,
and renal-cerebral tissue oxygenation ratio. There were no sig-
nificant changes in CrSO2 and cerebral FOE during the re-
warming period. In contrast, RrSO2 increased (P = .01) and
renal FOE decreased (P = .002) (Figure 4, A and B). The renal-
cerebral tissue oxygenation ratio increased during the rewarm-
ing period (P = .006) (Figure 4, C).

Discussion

In this prospective observational study of 20 neonates under-
going therapeutic hypothermia for HIE, we comprehensively
and simultaneously assessed blood pressure, systemic and end-
organ blood flow, and its determinants at time points set to
correspond to a 1°C incremental increase in target core tem-
perature (i.e. 33.5°C, 34.5°C, 35.5°C, and 36.5°C) during the
rewarming process. The steady increase in core temperature
to reverse therapeutic hypothermia initiates a dynamic meta-
bolic process, likened to a “kickstart” to reestablish normo-
thermic cerebral metabolism. Maladaptation to rapid rewarming
may lead to a mismatch between or uncoupling of oxygen de-
livery and demand. Overall, we found a significant change in
cardiovascular function as evidenced by increases in HR, frac-
tional shortening, and COEV and COecho and decreases in SVR
and MBP. As for the cerebral circulation, although there was
an increase in MCA peak systolic velocity, CrSO2 and cere-
bral FOE remained unchanged. Interestingly, RrSO2 (in a
“nonvital” organ) increased and renal FOE decreased during
rewarming. The increase in cardiac output indicates an overall
increase in systemic blood flow, and the increase in the renal-
cerebral tissue oxygenation ratio suggests a redistribution of
the increased systemic blood flow from a cephalic perfusion
preference during hypothermia to all organs (vital and nonvital)
during rewarming. The flow diagram in Figure 5 illustrates the

complex interactions among the various hemodynamic
measures.

It has long been established that HR increases during
rewarming22; however, little is known about other changes in
cardiovascular function. A small study (n = 7) found an increase

Figure 3. MCA peak systolic velocity during rewarming. Mean
peak systolic velocity (± 1 SD) is shown for T-3, T-1 (base-
line; open circles), T+2, T+4, and T+7 (rewarming; closed
circles). *Significant differences (P < .05) between time points
as denoted by the horizontal bars.

Figure 4. CrSO2, RrSO2, and FOE. A. CrSO2 (down-pointing
triangle) and cerebral FOE (up-pointing triangle) did not change
during rewarming, suggesting intact flow-metabolism cou-
pling. B, There was an increase in RrSO2 (circle) (T-1 vs T+2
and T+4) and a decrease in renal FOE (square) during (T-1
vs T+4) and after (T-1 vs T+7) rewarming. C, The renal-
cerebral tissue oxygenation ratio increased during rewarm-
ing (T-1 vs T+4) and after rewarming (T-1 vs T+7), suggesting
a shift in blood flow (as a proportion of cardiac output) to nonvital
organs while maintaining flow-metabolism coupling in the brain.
Data (mean ±1 SD) are shown for T-3, T-1 (baseline; open
circles), T+2, T+4, and T+7 (rewarming; closed circles). *Sig-
nificant differences (P < .05) between time points as denoted
by the horizontal bars.
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in cardiac output during rewarming,5 with more than one-
half of the patients receiving dobutamine during the study.
Similarly, approximately one-half of the patients in a recent
study demonstrating an increase in cardiac output with re-
warming were also receiving medications supporting cardio-
vascular function.34 Except for 1 patient who received a
dopamine infusion at a constant rate, our patients were not
supported with vasopressors, and thus our finding of in-
creased cardiac output can be attributed solely to the in-
crease in core temperature. The observed increase in cardiac
output was due to an increase in HR rather than to an in-
crease in stroke volume, a finding consistent with a recent
study.34 Thus, the modest increase in fractional shortening seen
in our cohort did not translate to a significant increase in stroke
volume. This is also in agreement with the findings of a more
recent study,11 in which the post-rewarming increases in frac-
tional shortening and stroke volume did not reach statistical
significance. The decrease in SVR with rewarming also sup-
ports previously reported findings.34 Of note, despite a 20%-
30% increase in cardiac output, the decrease in SVR resulted
in a decrease in MBP in our study population. However, al-
though MBP was slightly lower than baseline (51 ± 7.8 vs
47 ± 6.7), it did not meet the accepted gestational age- and post-
natal age- dependent definition of neonatal hypotension.35 In
other words, the increase in cardiac output mostly countered
the significant fall in SVR, and despite the slight decrease in
MBP, maintained perfusion pressure within the acceptable clini-
cal range.

Because metabolic rate increases with increases in core body
temperature, rewarming is assumed to be associated with in-
creases in cerebral metabolic rate and oxygen demand. Ac-
cordingly, either cerebral blood flow or cerebral FOE (or both)
must increase to meet the increased oxygen demand of the
brain. In our study population, MCA peak systolic velocity in-
creased and CrSO2 and cerebral FOE remained unchanged, sug-
gesting an increase in cerebral blood flow and intact cerebral
flow-metabolism coupling, respectively, during and after re-
warming. The finding that CrSO2 and cerebral FOE re-
mained unchanged also implies that flow-metabolism coupling
was intact during therapeutic hypothermia, at least 3 hours
before the start of the rewarming process.

Other indices of MCA flow (ie, mean velocity, end dia-
stolic velocity, and resistive index) did not change. The reason
for this observation is unknown; however, although changes
in these indices reflect changes in flow, they represent differ-
ent properties of the flow-vascular resistance interaction.36 In
addition, it is likely that MCA diameter also increases with
rewarming,37 which results in increased MCA flow even when
velocity remains unchanged. Thus, it is possible that the com-
plexity of the interaction between flow and vascular resis-
tance combined with an increased MCA diameter explain the
observation that among the indices of flow investigated, only
peak systolic velocity increased.

As for renal tissue oxygen saturation, a relatively low base-
line (77.3 ± 10.6%) was observed during therapeutic hypo-
thermia compared with the RrSO2 in term healthy newborns

Figure 5. Flow diagram summarizing hemodynamic changes during rewarming. At the cardiac level, the increase in fractional
shortening did not result in an increase in stroke volume. There is no information about potential changes in preload. The in-
crease in heart rate led to an overall increase in cardiac output during rewarming. The difference between the magnitude of
the decrease in SVR and that of the increase in systemic blood flow resulted in a mild decrease in MBP. Finally, at the end
organ level in the brain and kidneys, our findings suggest that preferential cephalic blood flow distribution ceased in response
to rewarming, and that despite the mild fall in MBP, vital and nonvital organ blood flow increased during rewarming, and cere-
bral flow-metabolism coupling was intact at the end of therapeutic hypothermia and remained so during rewarming. See the
text for details.
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during the second to third postnatal days (86.8 ± 8.1%).38

During and after rewarming, RrSO2 rose and renal FOE fell.
These findings suggest that, in addition to the increase in renal
blood flow in response to rewarming, renal vasoconstriction
and decreased renal perfusion had occurred during therapeu-
tic hypothermia. In support of this assumption, the renal-
cerebral tissue oxygenation ratio also increased from 0.93 ± 0.1
to 1.01 ± 0.1 after rewarming. Taken together, these findings
suggest a progressive improvement in renal (nonvital organ)
oxygenation comparable to that observed in the brain by the
end of rewarming, and imply the presence of preferential ce-
phalic distribution of left ventricular output during therapeu-
tic hypothermia.11 The notion of preferential cephalic
distribution during therapeutic hypothermia is also sup-
ported by findings in the literature.11,39 In one study, the su-
perior vena cava flow-left ventricular output ratio decreased
by 6-12 hours after rewarming,11 and in another study, the rela-
tive proportion of descending aorta blood flow to left ven-
tricular output increased after rewarming.39

Our observations add to our knowledge of the changes in
vital and nonvital organ perfusion during rewarming from
therapeutic hypothermia and they also raise some questions.
Our findings indicate that despite a relatively lower systemic
blood flow (cardiac output) during therapeutic hypother-
mia, cerebral blood flow and flow-metabolism remain intact.
Cerebral blood flow (a vital organ blood flow) is maintained,
at least in part, by the decrease in renal (a nonvital organ)
perfusion, as suggested by the decrease in renal tissue oxygen-
ation. However, whether therapeutic hypothermia is protective
or detrimental for the kidneys in patients who exhibit the
compensatory decrease in renal blood flow to preserve cere-
bral perfusion is unclear. This issue is especially important in
patients in whom the initial hypoxemic-ischemic event also
results in acute kidney injury. Indeed, available data show
that 38%-56% of newborns treated with therapeutic hypo-
thermia have evidence of acute kidney injury associated with,
among other factors, longer duration of mechanical ventila-
tion and longer length of stay.40,41 Because fluid restriction is
the mainstay of supportive therapy in these patients, the
already low cardiac output might be further compromised in
these patients when fluid administration is restricted.
Future in-depth hemodynamic studies with a focus on pa-
tients with hemodynamic compromise and acute kidney injury
are needed to address this clinically relevant question. Al-
though therapeutic hypothermia is neuroprotective, it is
important to investigate whether the effects of therapeutic
hypothermia in patients with renal injury and compensatory
renal hypoperfusion are detrimental or protective for the
kidneys.

Although cerebral blood flow increases to match the in-
creased oxygen demand secondary to the elevated metabolic
activity during rewarming, a greater proportion of the in-
creased cardiac output perfuses the kidneys after rewarming.
This findings implies that therapeutic hypothermia is associ-
ated with vasoconstriction in nonvital organs to sustain ce-
rebral perfusion so that cerebral flow-metabolism coupling
remains intact.

The strength of our prospective observational study lies in
the use of comprehensive, time-synchronized assessment of
overall systemic blood flow, vascular resistance, end organ blood
flow velocity, organ and tissue perfusion, and FOE, allowing
us to gather reliable information on systemic perfusion and
vital (brain) and nonvital (kidney) organ blood flow distri-
bution before, during, and after rewarming in patients treated
with therapeutic hypothermia for HIE. In addition, the ma-
jority of our cohort did not receive vasopressor-inotrope
support during the rewarming process, enabling a more robust
comparison of the hemodynamic measures in our patients.

This study has several limitations, however. First, we en-
rolled a relatively small number of patients, with the major-
ity of the cohort (80%) having normal to mild injury on brain
MRI. Although we used both NIRS and Doppler flow veloc-
ity indices for assessment of changes in organ blood flow, limi-
tations of these techniques for assessing blood flow changes
need to be kept in mind.

Significant cardiovascular changes occur during rewarm-
ing in neonates treated with therapeutic hypothermia for HIE.
These changes include increases in HR, cardiac output, and
vital (brain) and nonvital (renal) organ blood flow, with pres-
ervation of cerebral flow-metabolism coupling and cessation
of preferential cephalic blood flow distribution that charac-
terizes systemic hemodynamics during therapeutic
hypothermia. ■
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Figure 1. A sample of data collection for patient 5. Hemodynamic measures shown are HR, SpO2, MBP, COEV, CrSO2, and
RrSO2. Cardiac output (dark blue) closely follows HR (green). MBP (light gray) oscillations are mirrored by RrSO2 (dark gray),
suggesting lost autoregulation in the kidneys. For this individual patient, despite a steady increase in cardiac output and HR
during rewarming, MBP and CrSO2 remained largely unaffected.
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Figure 2. A, Changes in determinants of cardiac output, assessed by echocardiography. Mean hemodynamic data (± 1 SD)
are shown for T-3, T-1 (baseline; open circles), T+2, T+4, and T+7 (rewarming; closed circles). *Significant differences (P < .05)
between time points as denoted by the horizontal bars. B, Changes in cardiac output, systemic vascular resistance, and MBP
during rewarming. Mean hemodynamic data (± 1 SD) are shown for T-3, T-1 (baseline; open circles), T+2, T+4, and T+7 (rewarming;
closed circles). *Significant differences (P < .05) between time points as denoted by the horizontal bars.
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