Modelo

Mayo 2022


 

 

 

 

Hipopituitarismo congénito


Geoanna Bautista, MD        Department of Pediatrics, Division of Neonatology, University of California, Davis Children’s Hospital, Sacramento, CA
 

Brechas prácticas
 

Dada la función reguladora crítica de la glándula pituitaria, el reconocimiento temprano del hipopituitarismo congénito en los recién nacidos es crucial para iniciar rápidamente la terapia de reemplazo para evitar consecuencias potencialmente devastadoras. Los clínicos deben estar familiarizados con los signos y síntomas que se presentan en el período neonatal y mantener un alto nivel de sospecha de deficiencias de hormonas hipofisarias para asegurar un diagnóstico y tratamiento oportunos.


Objetivos

Abstract

Abreviaturas

Introducción

 

Figura.-   Representación esquemática de las hormonas de la hipófisis anterior y sus órganos diana. ACTH = hormona adrenocorticotrópica, CRH = hormona liberadora de corticotropina, FSH = hormona estimulante del folículo, GH = hormona del crecimiento, GHRH = hormona liberadora de la hormona del crecimiento, GnRH = hormona liberadora de gonadotropina, IGF = factor de crecimiento similar a la insulina, LH = hormona luteinizante, TRH = hormona liberadora de tirotropina, TSH=hormona estimulante de la tiroides, T3=triyodotironina; T4=tiroxina. (Ilustrado por Geoanna Bautista usando Biorender.com)

 

Embriología y Desarrollo

Causas genéticas seleccionadas de Hipopituitarismo

 

Tabla.- Clinical Features of Select Gene Mutations Involved in Pituitary Hormone Deficiencies and Syndromes

 

Gen

Inheritance

Deficienciade Hormonas asociadas

Características clínicas

MRI

 POU1F1 (PIT-1)

AR, AD

GH, TSH, PRL

Severe growth failure, prominent facial features, neurological impairment

APH or normal

PROP1

AR

GH, TSH, PRL, LH, FSH (evolving ACTH) Delayed onset of ACTH deficiency APH, EAP, or normal

LHX3

AR

GH, TSH, PRL, LH, FSH +/-ACTH

Spine abnormalities (short cervical spine, limited neck rotation, and trunk

movement), sensorineural hearing loss

APH, EAP, or normal

LHX4

AD

CPHD (GH, TSH, ACTH deficiencies; variable

gonadotropin deficiency)

Cerebellar abnormalities, heart failure

APH, EPP

SOX2

AD (de novo)

LH, FSH, variable GH deficiency

Anophthalmia/microphthalmia, esophageal atresia, GU abnormalities,

sensorineural hearing loss, SOD variant

APH

SOX3

XL

IGHD or CPHD

Craniofacial abnormalities with or without intellectual

disability, SOD variant

APH, EPP

OTX2

AD

IGHD or CPHD (GH, TSH, PRL, LH, FSH)

Bilateral anophthalmia, bilateral severe microphthalmia,

seizures, SOD variant

APH, EPP, or normal

HESX1

AR, AD

IGHD or CPHD

SOD variant

APH, EPP, ACC

TBX19 (T-P1T)

AR

 Isolated ACTH

Severe hypoglycemia, seizures, cholestasis

Normal

CHD7

AD

FSH, LH, GH, ACTH

CHARGE syndrome, SOD variant

APH, EPP

IGSF1

XL

Isolated TSH 1/- PRL, GH

Delayed puberty, macroorchidism

Normal

ACC=agenesis of corpus collosum, ACTH=adrenocorticotropic hormone, AD=autosomal dominance, APH=anterior pituitary hypoplasia,

AR=autosomal recessive, CPHD=combined pituitary hormone deficiency, EAP=enlarged anterior pituitary, EPP=ectopic posterior pituitary,

FSH=follicle-stimulating hormone, GH=growth hormone, GU=genitourinary, IGHD=isolated growth hormone deficiency, LH=luteinizing hormone, PRL=prolactin,

SOD=septo-optic dysplasia, TSH=thyroid-stimulating hormone, XL=X-linked.


Variantes de displasia septo-óptica

Síndrome de interrupción del tallo hipofisario

Deficiencias hipofisiarias en Sindrome CHARGE

PROP1


POU1F1  (Previamente conocido como  PIT-1)


LHX3 :  Hipopituitarismo con anomalías de columna vertebral

LHX4: Hipopituitarismo con hallazgos cerebelares e Insuficiencia cardíaca


TBX19 :   Deficiencia aislada de ACTH

IGSF1:  Hipotiroidismo central y macro - orquidismo


Presentaciones clínicas y Diagnóstico


Deficiencia de GH

Deficiencia de ACTH


Deficiencia de TSH


Deficiencia de Gonadotropina  (DG)

Manejo

Conclusión


HC puede ser difícil de diagnosticar, particularmente en el período neonatal. Los signos y síntomas a menudo son inespecíficos y pueden superponerse con otros procesos patológicos. El neonatólogo debe considerar las deficiencias de hormonas hipofisarias en circunstancias específicas para que el diagnóstico no se demore. También es importante resaltar el hecho de que las variables confundentes pueden jugar un papel en el diagnóstico certero de ciertas deficiencias en la población neonatal. Esto incluye el uso de infusión de dopamina, que puede causar niveles disminuídos de TSH, T4 y prolactina en bebés de muy bajo peso al nacer. La hepatitis neonatal inexplicada, la colestasis (especialmente cuando está presente en las primeras 2 semanas después del nacimiento) y la hipoglucemia grave deben impulsar una evaluación de las deficiencias de hormonas hipofisarias. La presencia de cualquier anomalía del sistema nervioso central o anomalías de la línea media también debe impulsar una evaluación para HC . El reconocimiento temprano y el inicio rápido de la terapia de reemplazo hormonal son fundamentales para lograr resultados óptimos y evitar una morbilidad y mortalidad devastadoras en el recién nacido.

Especificaciones de contenido neonatal-perinatal de la Junta Estadounidense de Pediatría

Referencias

  1. Kliegman R, St Geme J. Nelson Textbook of Pediatrics. 21st ed. Philadelphia, PA: Elsevier; 2020

  2. Macdonald MG, Mullet MD, Seshia MMK. Avery’s Neonatology Pathophysiology and Management of the Newborn. 7th ed. Philadelphia, PA: Lippincott. 2016

  3. Alatzoglou KS, Dattani MT. Genetic forms of hypopituitarism and their manifestation in the neonatal period. Early Hum Dev. 2009; 85(11):705–712

  4. Bosch I Ara L, Katugampola H, Dattani MT. Congenital hypopituitarism during the neonatal period: epidemiology, pathogenesis, therapeutic options, and outcome. Front Pediatr. 2021;8:600962

  5. Alatzoglou KS, Gregory LC, Dattani MT. Development of the pituitary gland. Compr Physiol. 2020;10(2):389–413

  6. Tziaferi V, Dattani MT. Pituitary gland embryology, anatomy and physiology. In: Ledbetter DJ, Johnson PRV, eds. Endocrine Surgery in Children. New York, NY: Springer; 2018:427–437

  7. Davis SW, Ellsworth BS, Per ez Millan MI, et al. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol. 2013;106:1–47

  8. Cohen LE, Radovick S. Molecular basis of combined pituitary hormone deficiencies. Endocr Rev. 2002;23(4):431–442

  9. Mehta A, Dattani MT. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract Res Clin Endocrinol Metab. 2008;22(1):191–206

  10. Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol. 2004;228(1-2):1–21

  11. Sheng HZ, Moriyama K, Yamashita T, et al. Multistep control of pituitary organogenesis. Science. 1997;278(5344):1809–1812

  12. Sheng HZ, Westphal H. Early steps in pituitary organogenesis. Trends Genet. 1999;15(6):236–240

  13. Martin RJ, Fanaroff AA, Walsh MC. Fanaroff and Martin's Neonatal- Perinatal Medicine: Diseases of the Fetus and Infant. 11th ed. Philadelphia, PA: Elsevier; 2020

  14. Dasen JS, Rosenfeld MG. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci. 2001;24:327–355

  15. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007;87(3):933–963

  16. Zhu X, Wang J, Ju BG, Rosenfeld MG. Signaling and epigenetic regulation of pituitary development. Curr Opin Cell Biol. 2007; 19(6):605–611

  17. Ahmad T, Borchert M, Geffner M. Optic nerve hypoplasia and hypopituitarism. Pediatr Endocrinol Rev. 2008;5(3):772–777

  18. Kelberman D, Dattani MT. The role of transcription factors implicated in anterior pituitary development in the aetiology of congenital hypopituitarism. Ann Med. 2006;38(8):560–577

  19. Garcia-Filion P, Borchert M. Optic nerve hypoplasia syndrome: a review of the epidemiology and clinical associations. Curr Treat Options Neurol. 2013;15(1):78–89

  20. Sataite I, Cudlip S, Jayamohan J, Ganau M. Septo-optic dysplasia. Handb Clin Neurol. 2021;181:51–64

  21. Mehta A, Hindmarsh PC, Mehta H, et al. Congenital hypopituitarism: clinical, molecular and neuroradiological correlates. Clin Endocrinol (Oxf). 2009;71(3):376–382

  22. Wu ZY, Li YL, Chang B. Pituitary stalk interruption syndrome and liver changes: From clinical features to mechanisms. World J Gastroenterol. 2020;26(44):6909–6922 

  23. Karaca E, Buyukkaya R, Pehlivan D, et al. Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 2015;100(1): E140–E147

  24. Balasubramanian R, Choi JH, Francescatto L, et al. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc Natl Acad Sci USA. 2014;111(50):17953–17958

  25. Balasubramanian R, Crowley WF Jr. Reproductive endocrine phenotypes relating to CHD7 mutations in humans. Am J Med Genet C Semin Med Genet. 2017;175(4):507–515

  26. Gregory LC, Gevers EF, Baker J, et al. Structural pituitary abnormalities associated with CHARGE syndrome. J Clin Endocrinol Metab. 2013;98(4):E737–E743

  27. Mody S, Brown MR, Parks JS. The spectrum of hypopituitarism caused by PROP1 mutations. Best Pract Res Clin Endocrinol Metab. 2002;16(3):421–431

  28. Parkin K, Kapoor R, Bhat R, Greenough A. Genetic causes of hypopituitarism. Arch Med Sci. 2019;16(1):27–33

  29. Gregory LC, Dattani MT. The molecular basis of congenital hypopituitarism and related disorders. J Clin Endocrinol Metab. 2020;105(6):dgz184

  30. Bonfig W, Krude H, Schmidt H. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature. Eur J Pediatr. 2011;170(8): 1017–1021

  31. Filges I, Bischof-Renner A, R€othlisberger B, et al. Panhypopituitarism presenting as life-threatening heart failure caused by an inherited microdeletion in 1q25 including LHX4. Pediatrics. 2012;129(2):e529–e534

  32. Couture C, Saveanu A, Barlier A, et al. Phenotypic homogeneity and genotypic variability in a large series of congenital isolated ACTHdeficiency
    patients with TPIT gene mutations. J Clin Endocrinol Metab. 2012;97(3):E486–E495

  33. Sun Y, Bak B, Schoenmakers N, et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet. 2012;44(12):1375–1381

  34. Mehta S, Brar PC. Severe, persistent neonatal hypoglycemia as a presenting feature in patients with congenital hypopituitarism: a review of our case series. J Pediatr Endocrinol Metab. 2019;32(7): 767–774

  35. Piantanida E, Ippolito S, Gallo D, et al. The interplay between thyroid and liver: implications for clinical practice. J Endocrinol Invest. 2020;43(7):885–899

  36. Sheehan AG, Martin SR, Stephure D, Scott RB. Neonatal cholestasis, hypoglycemia, and congenital hypopituitarism. J Pediatr Gastroenterol Nutr. 1992;14(4):426–430

  37. Altay D, Eren E, Ozkan TB, Ozgur T, Tarõm O. Liver involvement in congenital hypopituitarism. Indian J Pediatr. 2019;86(5):412–416

  38. Hatipo glu N, Kurto glu S. Micropenis: etiology, diagnosis and treatment approaches. J Clin Res Pediatr Endocrinol. 2013;5(4): 217–223

  39. Ogilvy-Stuart AL. Growth hormone deficiency (GHD) from birth to 2 years of age: diagnostic specifics of GHD during the early phase of life. Horm Res. 2003;60(Suppl 1):2–9 Vol. 23 No. 5 MA Y 2 0 2 2 e307

  40. Binder G, Weidenkeller M, Blumenstock G, Langkamp M, Weber K, Franz AR. Rational approach to the diagnosis of severe growth hormone deficiency in the newborn. J Clin Endocrinol Metab. 2010;95(5):2219–2226

  41. Karnsakul W, Sawathiparnich P, Nimkarn S, Likitmaskul S, Santiprabhob J, Aanpreung P. Anterior pituitary hormone effects on hepatic functions in infants with congenital hypopituitarism. Ann Hepatol. 2007;6(2):97–103

  42. Oprea A, Bonnet NCG, Poll e O, Lysy PA. Novel insights into glucocorticoid replacement therapy for pediatric and adult adrenal insufficiency. Ther Adv Endocrinol Metab. 2019;10:2042018818821294 

  43. Shulman DI, Palmert MR, Kemp SF; Lawson Wilkins Drug and Therapeutics Committee. Adrenal insufficiency: still a cause of morbidity and death in childhood. Pediatrics. 2007;119(2):e484–e494 

  44. Coshway LK, Indyk JA, Bowden SA. Repeating ACTH stimulation test is necessary to diagnose ACTH deficiency in neonatal hypopituitarism with initial false negative result. Glob Pediatr Health. 2014;1:2333794X14563385

  45. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis. 2010;5(1):17 doi: 10.1186/1750-1172-5-17

  46. Weiner A, Oberfield S, Vuguin P. The Laboratory features of congenital hypothyroidism and approach to therapy. NeoReviews. 2020;21(1):e37–e44

  47. Beck-Peccoz P, Rodari G, Giavoli C, Lania A. Central hypothyroidism: a neglected thyroid disorder. Nat Rev Endocrinol. 2017;13(10):588–598

  48. Filippi L, Pezzati M, Cecchi A, et al. Dopamine infusion and anterior pituitary gland function in very low birth weight infants. Biol Neonate. 2006;89(4):274–280

  49. Tuladhar R, Davis PG, Batch J, Doyle LW. Establishment of a normal range of penile length in preterm infants. J Paediatr Child Health. 1998;34(5):471–473

  50. Becker M, Hesse V. Minipuberty: why does it happen? Horm Res Paediatr. 2020;93(2):76–84

  51. Renault CH, Aksglaede L, Wøjdemann D, Hansen AB, Jensen RB, Juul A. Minipuberty of human infancy - A window of opportunity to evaluate hypogonadism and differences of sex development? Ann Pediatr Endocrinol Metab. 2020;25(2):84–91

  52. Lanciotti L, Cofini M, Leonardi A, Penta L, Esposito S. Up-to-date review about minipuberty and overview on hypothalamic-pituitarygonadal axis activation in fetal and neonatal life. Front Endocrinol (Lausanne). 2018;9:410

  53. Lee MM, Donahoe PK, Silverman BL, et al. Measurements of serum m€ullerian inhibiting substance in the evaluation of children with nonpalpable gonads. N Engl JMed. 1997;336(21):1480–1486

  54. Yagasaki H, Kobayashi K, Nemoto A, Naito A, Sugita K, Ohyama K. Late-onset circulatory dysfunction after thyroid hormone treatment in an extremely low birth weight infant. J Pediatr Endocrinol Metab. 2010;23(1-2):153–158

  55. Higuchi A, Hasegawa Y. Dose adjustments of hydrocortisone and lthyroxine in hypopituitarism associated with cholestasis. Clin Pediatr Endocrinol. 2006;15(3):93–96

  56. Rogol AD, Richmond EJ. Treatment of growth hormone deficiency in children. Available at: https://www.uptodate.com/contents/treatmentof- growth-hormone-deficiency-in-children? Accessed February 2, 2022

  57. Reiter EO, Price DA, Wilton P, Albertsson-Wikland K, Ranke MB.Effect of growth hormone (GH) treatment on the near-final height of 1258 patients with idiopathic GH deficiency: analysis of a large international database. J Clin EndocrinolMetab. 2006;91(6):2047–2054

  58. Ranke MB, Lindberg A, Albertsson-Wikland K, Wilton P, Price DA, Reiter EO. Increased response, but lower responsiveness, to growth
    hormone (GH) in very young children (aged 0-3 years) with idiopathic GH Deficiency: analysis of data from KIGS. J Clin Endocrinol Metab. 2005;90(4):1966–1971

  59. Heckmann M, Hartmann MF, Kampschulte B, et al. Assessing cortisol production in preterm infants: do not dispose of the nappies. Pediatr Res. 2005;57(3):412–418

  60. Jett PL, Samuels MH, McDaniel PA, et al. Variability of plasma cortisol levels in extremely low birth weight infants. J Clin Endocrinol Metab. 1997;82(9):2921–2925

  61. LaFranchi SH. Approach to the diagnosis and treatment of neonatal hypothyroidism. J Clin Endocrinol Metab. 2011;96(10):2959–2967 

  62. Selva KA, Mandel SH, Rien L, et al. Initial treatment dose of Lthyroxine in congenital hypothyroidism. J Pediatr. 2002;141(6): 786–792

  63. Bougn eres P, Fran¸cois M, Pantalone L, et al. Effects of an early postnatal treatment of hypogonadotropic hypogonadism with a continuous subcutaneous infusion of recombinant folliclestimulating hormone and luteinizing hormone. J Clin Endocrinol Metab. 2008;93(6):2202–2205

  64. Stoupa A, Samara-Boustani D, Flechtner I, et al. Efficacy and safety of continuous subcutaneous infusion of recombinant human gonadotropins for congenital micropenis during early infancy. Horm Res Paediatr. 2017;87(2):103–110
     

NEO QUIZ


1. Congenital hypopituitarism occurs in 1 in 4,000 to 10,000 live births. It is defined as a deficiency in 1 or more hormones produced by the anterior pituitary or released by the posterior pituitary. The pituitary gland is derived from ectodermal tissue whereas the hypothalamus develops from the ventral portion of the diencephalon. Both the pituitary and hypothalamic glands become functional by 12 weeks’ gestation. When does the hypothalamuspituitary axis develop during gestation?

  1. 12 to 14 weeks’ gestation.

  2. 14 to 16 weeks’ gestation.

  3. 16 to 18 weeks’ gestation.

  4. 18 to 20 weeks’ gestation.

  5. 20 to 22 weeks’ gestation.

2. Septo-optic dysplasia (SOD), which occurs in 1 in 10,000 live births, is defined by the presence of at least 2 of the following: optic nerve hypoplasia, midline abnormalities such as agenesis of the corpus callosum and absence of septum pellucidum, and/or pituitary hypoplasia with hypopituitarism. Which of the following statements represents the most common endocrine abnormality in SOD?

  1. Growth hormone (GH).

  2. Adrenocorticotropic hormone.

  3. Thyroid-stimulating hormone (TSH).

  4. Follicle-stimulating hormone.

  5. Prolactin.

3. Neonates with congenital hypopituitarism typically present with nonspecific symptoms, making the diagnosis challenging in the newborn period. Which
of the following signs/symptoms is not usually associated with congenital hypothyroidism?

  1. Hypoglycemia.

  2. Electrolyte abnormalities.

  3. Poor weight gain.

  4. Feeding difficulties.

  5. Short birth length.

4. A 40-week-gestation male newborn is being evaluated for persistent hypoglycemia. The history is significant for familial short stature. The team suspects GH deficiency. Which of the following statements supports the diagnosis of GH deficiency in this patient?

  1. A stretched penile length of 2.7 cm.

  2. A random GH concentration of 4.5 ng/mL (4.5 lg/L) on day 6 after birth.

  3. A low insulinlike growth factor 1 level on day 6 after birth.

  4. An enlarged anterior pituitary on brain magnetic resonance imaging (MRI).

  5. Posterior pituitary hypoplasia on brain MRI.


5. A term neonate is admitted on day 6 after birth with hyperbilirubinemia and poor feeding. The parents also report increased sleepiness and constipation.
The physical examination findings are significant for jaundice, mild hypotonia, and a widened anterior fontanelle. Laboratory evaluation reveals low free thyroxine and low TSH levels, confirming a diagnosis of central hypothyroidism. The infant is started on treatment with levothyroxine at 10 lg/kg per day. When is the TSH level expected to normalize after initiation of levothyroxine?

  1. Within 3 days.

  2. Within 7 days.

  3. Within 14 days.

  4. Within 4 weeks.

  5. Within 8 weeks.